Y-хромосома и могущество. На что влияет мужская хромосома

Содержание

Сколько хромосом у нормального человека (мужчин, женщин) и синдрома Дауна

Y-хромосома и могущество. На что влияет мужская хромосома

В этой статье кратко рассмотрим информацию, касающуюся хромосом, их характеристики, историю изучения и болезни, связанные с данными структурами.

Что такое хромосома человека? Основные виды

Хромосомы – это структуры, которые находятся в ядре клетки и представляют собой нуклеопротеиды, иными словами — комплекс нуклеиновых кислот с белками.

ДНК – важная молекула, которая является матрицей для генов. Она непосредственно отвечает за хранение, передачу и реализацию генетической информации. Термин «хромосома» введен немецким ученым Генрихом Вальдейером в XIX веке и означает «окрашенное тело»

Виды данных структур:

  • Аутосомные или аутосомы – это парные хромосомы, которые являются копиями друг друга и встречаются у мужских и женских организмов.
  • Половые — не относятся к аутосомам, так как различаются у особей разного пола. Они определяют пол организма, а также являются гаплоидными. То есть в половой клетке находится в два раза меньше хромосом, чем в обычной.

Сколько хромосом у нормального человека

В норме у здорового человека имеется 23 пары или 46 хромосом, из которых 22 пары аутосом и 1 пара –половых. Диплоидный набор – это полный комплект генов. Он обозначается 2n.

Диплоидный набор человека равен 46 хромосомам, и он находится во всех клетках, кроме половых. В последних находится гаплоидный набор, который обозначается n, и равен он 23.

Половые также не являются идентичными у мужчин и у женщин. Количество хромосом у здоровой особи остается постоянным на протяжении всей ее жизни.

Что значит 46 и 47 хромосом: история открытия

Годом открытия считают 1882 год, и связывают это событие с именем немецкого анатома Вальтера Флеминга , который описал и упорядочил сведения о них.

В начале XX века ученые Теодор Бовери и Уолтер Сеттон, каждые работая независимо, выдвинули гипотезу о том, что они играют роль в генетике и наследственности.

Экспериментально их идею подтвердили ученые Томас Морган, Кэлвин Бриджест, Альфред Стёртевант и Герман Мёллер. Объектом их изучения стала плодовая мушка Дрозофила.

На основании данных проведенных экспериментов исследователи выдвинули хромосомную теорию наследственности. Она гласит, что наследственную информацию от поколения к поколению передают именно эти образования.

Томас Морган за эту теорию получил Нобелевскую премию.

Ученые Альберт Леван и Джо Хин Тио в 1956 году установили, что у человека 46 хромосом. Этот набор характерен для аутосом, для половых хромосом их количество — 23. Поговорим подробнее о различии половых генов у мужчин и женщин.

Сколько хромосом у мужчин

Мужской набор данного вида в норме выглядит, как XY. Y-хромосома названа так за свою форму. Мужская не имеет некоторых участков, называемых аллелями, которые присущи женской хромосоме.

Также она ответственна за формирование именно мужского типа организма, например, ген SRY есть только в этой хромосоме и контролирует сперматогенез, а также несет функцию формирования мужского пола у плода.

Сколько хромосом у женщин

Y не способна передавать свои участки X-хромосоме, то есть не может рекомбинироваться с ней.

Способна ли Y-хромосома исчезнуть? Не так давно ученые из Пенсильванского Университета опубликовали статью о том, что мужская генетическая информация не только эволюционировала быстрее X, но в процессе этого теряла гены. Например, в X-хромосоме всего 1100 генов, тогда как в Y всего 200 или даже меньше. Однако раньше это количество было идентично. Ученые предполагают, что через миллионы лет мужская хромосома вполне способна исчезнуть.

Проект «Геном человека»

Международный проект, цель которого – полностью расшифровать геном человека. Проект начался он в 1990 году под руководством Джеймса Уотсона, нобелевского лауреата, открывшего ДНК.

Где находятся хромосомы

Ген – это участок ДНК, который несет информацию об определенном признаке организма. Геном же – совокупность всех генов у особи. Его расшифровка позволит нам узнать больше о генах человека, как они функционируют, меняются, а также о том, что приводит к генетическим и другим заболеваниям. Этим и занимается проект «Геном человека».

В 2000 году он был завершен. В результате было определено 25 000 генов человека, усовершенствованы приборы для анализа данных в этой области, идентифицированы 3 млрд. пар оснований в ДНК, создан банк генокода, в котором можно найти информацию о конкретных генах, а также дополнение данные по генетической эволюции человека.

Сколько хромосом у человека с синдромом Дауна

Есть два вида отклонений такого рода:

  • Первый из них – анеуплоидия. Это такое изменение набора хромосом, в котором их количество не кратно гаплоидному набору, обозначаемому n. Примерами анеуплоидии являются моносомия и трисомия. В норме каждой хромосомы должно быть по две, однако при моносомии появляется отклонение, когда вместо пары имеем лишь одну. И чревато оно выкидышем, бесплодием, отставанием по росту в детстве, пороками сердца, полнотой, гипертонией и другим негативным влиянием на здоровье. Трисомия – наличие одной лишней хромосомы. То есть вместо пары одинаковых или гомологичных хромосом в норме имеем к ним еще одну такую же, которая ведет к синдромам Дауна, Патау или Эдвардса.
  • Второй вид отклонения – полиплоидия. Она характерна в основном для растений или червей и заключается в кратном увеличении числа хромосом в клетках. То есть, если в норме диплоидный набор – это 2n , то при полиплоидии будет 4n, 8n, 12n, 24n и более.

Причины отклонений, как они проявляются и какова вероятность возникновения

Рассмотрим несколько наиболее распространенных отклонений:

  • Синдром Дауна. В среднем встречается один родившийся с синдромом ребенок на 1000 здоровых. Причиной его является трисомия по 21 хромосоме. В норме этих хромосом должно быть две, а при данном отклонении их три. В жизни это заболевание проявляется в пороке сердца, лицевых изменениях, деформации грудной клетки, гиперподвижности суставов и ряде других признаков. Что касается умственной отсталости, то дебильность развивается лишь в 5%, имбецильность– в 75%, идиотия, или тяжелая степень умственной отсталости – в 20%.
  • Хромосомный мозаицизм. Отклонение, при котором в организме растения, человека или животного есть генетически различающиеся клетки. Различия могут быть по причине анеуплоидии, которая была описана выше. Причинами могут быть мутации на ранних стадиях зародыша, неправильном расхождении хромосом при делении клеток, генотерапия. У человека данное нарушение может привести к следующим синдромам: Дауна, Кляйнфельтера, Шерешевкого-Тернера, Эдвардса. У животных и человека — к гермафродитизму.
  • Транслокация. Вид мутации, при которой переходит перенос участка с одной на другую, не являющуюся ее парой, то есть негомологичную. Причиной является нарушение в молекуле ДНК. Частота среди людей по данному отклонению: 1 на 1300 человек.
  • Синдром Эдвардса. Причиной является трисомия по 18 хромосоме. Частота встречаемости: 1 на 5000. Проявляется в низком весе новорожденного, аномалиях черепа, пороке сердца, умственной отсталости и нарушении некоторых структур мозга, сниженном мышечном тонусе.
  • Синдром Патау. Также является трисомией. Частота встречаемости 1:14000. При этом синдроме наблюдаются тяжелые врожденные пороки лицевой части черепа, лица, нарушение развития ЦНС, пороки сердца, нарушения поджелудочной железы, селезенки, высокая младенческая смертность.
  • Синдром Шерешевского-Тернера. Основная причина — полное отсутствие второй пары. Затрагивает это нарушение только девочек. Встречаемость: 1 из 3000 новорожденных. Проявляется в недоношенности новорожденных, задержками речевого развития, пороками сердца, в короткой шее со складками кожи по бокам, отставании в физическом развитии.

Проект «CRISPR-Cas9» и один этический вопрос

Данная технология была создана с целью редактирования генома. Сделать это можно, удаляя, добавляя и изменяя части генома. Эта система состоит из двух молекул, которые вызывают мутации в ДНК. Одна из молекул — Cas9 – призвана работать ножницами, а другая – гРНК – направляет «ножницы» в то место, где необходимо разрезать ДНК.

Применять ее планируется для лечения генетических нарушений в геноме человека, а также для модификации сельскохозяйственных культур и пород. Например, можно излечить раковых больных, людей с наследственными заболеваниями, а также улучшить полезные свойства растений и животных, используемых для получения пищи и иного сырья.

Также одной из целью является редактирование генома насекомых-переносчиков заболеваний, например, малярии, удалив всего один ген. С помощью этой технологии возможно сделать так, чтобы комары больше не смогли нести в себе патогенный микроорганизм и заражать людей. Еще одна идея – модифицировать геном свиней так, чтобы их органы подходили как донорские для трансплантации.

Это важно

Однако сразу назревает вопрос: насколько этично применять редактирование генома к человеческому организму? Ведь возможны ошибки, которые присущи как самой технологии, так и ее выполнению, которые отразятся на пациенте.

Если редактируется геном эмбриона человека, то ошибка может стать фатальной.

Однако это еще не повод отказываться от развития данной технологии, которая в будущем способна решить многие вопросы, касающиеся здоровья и качества жизни.

data-block2=>

Источник: https://sowetu.ru/read/skolko-khromosom-u-normalnogo-cheloveka-muzhchin-zhenshhin-i-sindroma-dauna.html

От чего зависит пол будущего ребёнка

Y-хромосома и могущество. На что влияет мужская хромосома

Всем привет, с вами Ольга Рышкова. Из школьного и ВУЗовского курса многие знают, что пол человека формируется в период зачатия и определяют его хромосомы. Вы помните, что у человека 23 пары хромосом? Каждая клеточка нашего тела содержит этот набор хромосом.

У мужчин и женщин все пары хромосом одинаковые, кроме одной пары. Это половые хромосомы. В этой паре у женщин одинаковые хромосомы, а у мужчин разные. Именно эта пара определяет наш пол. У женщин это две Х хромосомы (ХХ), а у мужчин ХУ хромосомы.

Посмотрите, это видно на рисунке – все пары хромосом у мужчин и женщин одинаковые, а половые хромосомы, обведённые кружочком, разные.

Все наши клетки имеют парные хромосомы (двойной набор), а вот в половых клетках (яйцеклетках у женщин и сперматозоидах у мужчин) – одиночный набор. То есть все яйцеклетки женщин имеют одну Х-хромосому. А у мужчин половина сперматозоидов имеет Х-хромосому, половина У-хромосому.

Пол ребёнка зависит от сперматозоида мужчины

Так почему же рождаются мальчики или девочки? Пол будущего ребёнка зависит от того, какой сперматозоид проникнет в яйцеклетку – с Х-хромосомой или с У-хромосомой. Вы поняли, что пол ребёнка зависит от сперматозоида мужчины?

Если так, будет мальчик.

А если так, будет девочка.

Тут вмешиваются гормоны

Оказалась, что пол будущего ребёнка формируется не только при определённом наборе хромосом. Только недавно учёные обнаружили, насколько важна роль тестостерона в том, кем будет ребёнок – мужчиной или женщиной. Всю жизнь мы находимся под влиянием гормонов. Но наиболее активно влияние этих химических веществ в то время, когда определяется наш пол, ещё до рождения.

Это вас может шокировать

Почти никто не знает, что человеческий зародыш в первые 6 недель развивается как женщина. То есть все мы, включая 100%-ных мужчин, независимо от набора хромосом, сначала развивались как женщины.

И только на седьмой неделе, когда начинается формирование половых желез, когда у эмбриона с набором хромосом ХУ начнут формироваться семенники, вырабатывающие тестостерон, только тогда начнётся формирование мужчины.

Пол определяется тестостероном

Независимо от того, какой набор хромосом у плода – ХХ или ХУ, только наличие или отсутствие тестостерона сформирует его мальчиком или девочкой. Если гормон не вырабатывается, то в любом случае будет девочка.

Это нормально?

Это может быть нормой, а может быть патологией. На 7-8 неделе под влиянием У-хромосомы у эмбриона начинают формироваться семенники, они выделяют тестостерон, и под влиянием тестостерона развиваются наружные половые органы и изначально женские гениталии превращаются в мужские. Это норма.

Под влиянием Х-хромосомы на 7-8 неделе у плода начинают формироваться яичники, они не выделяют тестостерон и женские половые органы продолжают развиваться как женские. Это тоже норма.

А в чём же патология?

Учёные пришли к выводу, что тестостерон влияет на пол будущего ребёнка, когда стали изучать людей с мужским набором хромосом, которые так и не стали обычными мужчинами.

Есть такая патология, она называется синдром невосприимчивости к андрогенам (СНА). Это генетическое отклонение.

Оно наблюдается у 1 из 30 000 младенцев, когда эмбрион мужского пола не может использовать вырабатывающийся тестостерон и не воспринимает мужские половые гормоны.

Люди с синдромом невосприимчивости к андрогенам являются наглядной демонстрацией того, что пол ребёнка определяют не столько хромосомы, сколько гормоны. Несмотря на мужской набор хромосом плод с этим синдромом не может развиваться в мальчика, поскольку тестостерон не может выполнить свою задачу.

Мальчики рождаются девочками

В такой ситуации эмбрион генетически мужского пола. У него есть семенники, которые вырабатывают тестостерон. Но в его клетках отсутствуют рецепторы или структуры, воспринимающие тестостерон. Поэтому этого гормона как бы и нет.

Как следствие, дети, у которых этот синдром проявляется в самой яркой форме, при рождении во всём похожи на девочек. То, что генетически они мужчины, становится ясно, только когда в положенный срок у них не начинаются менструации.

Синдром невосприимчивости к андрогенам дал учёным понять, что гормоны формируют половую принадлежность человека не меньше, чем хромосомы.

До 70 годов мы не умели определять концентрацию гормонов, поэтому только теперь вдруг осознали ситуацию, которая существовала много веков. Есть мнение, что у Жанны д’Арк был этот синдром.

Гормоны влияют на поведение

Разобравшись в синдроме невосприимчивости к андрогенам, учёные начинают понимать, насколько сильно влияние гормонов на наше развитие. А как обстоит дело с развитием психическим? Сказывается ли влияние гормонов на различиях в мужском и женском поведении.

Если понаблюдать за тем, во что играют дети, то, как правило, мы увидим, что девочки чаще, чем мальчики играют в куклы, а мальчики  – в машинки, паровозики и тому подобное.

Вот уже 40 лет, как нам стало известно, что тестостерон и другие гормоны оказывают сильное влияние на поведение животных. Однако в отношении человека вопрос долго оставался открытым ввиду чрезвычайной сложности проведения чистых экспериментов.

Вполне понятно, что мы не можем просто так вводить людям гормоны, чтобы посмотреть, к чему это приведёт.

Мы с вами не исследователи, но легко обнаруживаем отличия в мужском и женском поведении. Не так-то просто вычленить влияние многих факторов, влияющих на развитие мужское и женское. Но вот недавно появились интересные факты, говорящие о том, что гормоны играют в этом немалую роль.

Женщины с мужскими гормонами

Для этого учёные стали наблюдать за теми, у кого концентрация гормонов не типична для людей этого пола. Высокая концентрация тестостерона нетипична для женщин. Но именно её учёные обнаружили у женщин с врождённой гиперплазией коры надпочечников. В период внутриутробного развития этих женщин вырабатывается тестостерон в тех же количествах, что и у мужчин.

Врождённая гиперплазия коры надпочечников не столь уж редкое явление. Она встречается у 1 из 6 тысяч детей. Эти девочки в будущем должны будут всю жизнь принимать лекарства, чтобы  оставаться женщинами. Компенсационный механизм организма побуждает надпочечники действовать на полную мощность, а единственное, на что они способны – это вырабатывать тестостерон в огромных количествах.

Первым признаком избытка тестостерона у девочек является то, что они рождаются с гениталиями неправильной формы, поскольку тестостерон уже начал превращать женские наружные половые органы в мужские. Учёные обнаружили, что поведение девочек с врождённой гиперплазией коры надпочечников больше похоже на поведение мальчиков.

Что не влияет

Отвечая на многие вопросы, сразу скажу, что на пол будущего ребёнка не влияет группа крови и резус-фактор отца и матери, форма живота, питание и токсикоз будущей мамы.

Источник: http://gormonyplus.ru/gormony/ot-chego-zavisit-pol-budushhego-rebyonka

Исчезновение мужской половины: нужна ли человечеству Y-хромосома?

Y-хромосома и могущество. На что влияет мужская хромосома

Y-хромосома – уникальная составляющая человеческого генома, наличием которой могут «похвастаться» лишь представители сильной половины человечества.

От других 45 составляющих здорового кариотипа, мужская половая хромосома отличается отсутствием пары и способностью служить одной из главных причин мутаций в организме.

Учёные утверждают: в женском кариотипе Y-хромосома полностью отсутствует, и даже у имеющих её мужчин при размножении не способна обмениваться участками ДНК с другими хромосомами.

Именно этим и объясняются пессимистические прогнозы научных мужей, которые пророчат полное исчезновение особей мужского пола в течение ближайших 10 млн. лет: обедневший наследственный материал Y-хромосомы и накопленные мутации делают её носителей всё менее и менее жизнеспособными.

Впрочем, в результате научных разработок получен и ещё более неожиданный результат: оказывается, для воспроизводства потомства участие носителя мужской хромосомы не является обязательным.

Мужские и женские хромосомы: особенности и история формирования

В течение долгого времени считалось, что хромосомное определение пола возникло еще 300 млн. лет назад – именно тогда появились мужские особи с кариотипом ХY и женские, имеющие кариотип ХХ. Однако по последним данным разделение на 2 пола произошло гораздо позднее – не ранее, чем 166 млн. лет назад.

Распространено мнение, что и Х-, и Y- хромосомы возникли из пары абсолютно одинаковых элементов генома у древних млекопитающих. Причиной такого изменения стало появление гена, в котором одна из аллелей направила развитие по мужскому типу.

Первоначально различие между мужской и женской хромосомами состояло лишь в одном гене, однако со временем полезные для самцов гены стали в большей мере развиваться в Y-хромосоме.

Сюда же попадала генетическая информация, которая бесполезна либо вредна для самок.

В процессе созревания половых клеток не происходит рекомбинирования Y- хромосомы с другими элементами генома, поэтому единственным фактором, провоцирующим изменения в мужском гене, являются мутации.

При этом «отбраковки» части генетической информации не происходит, а новых вариаций гена попросту не существует.

В результате в течение тысячелетий происходит передача практически неизменной Y- хромосомы от отца к сыну, однако вредных мутаций генетической информации при этом становится всё больше.

Процесс формирования сперматозоидов связан с многочисленным делением клеток, каждое из которых способно спровоцировать мутацию. Изменению генной информации способствует и кислая среда яичек. Поэтому не удивительно, что именно Y- хромосомы чаще всего оказываются фактором, провоцирующим паталогические отклонения.

Генетический распад мужской хромосомы: правда или вымысел?

По подсчётам учёных, в процессе эволюции большая часть изначально составляющей Y-хромосому генетической информации была утеряна, и сегодня мужская хромосома
состоит из 45-90 генов. Для сравнения – носитель женской генетической информации (Х-хромосома) включает 1400 генов.

Именно на этом дисбалансе и основан прогноз о полном исчезновении носителей Y-хромосом уже через несколько млн. лет, ведь каждые 250 тыс. лет мужской геном становится короче на 1 ген.

Впрочем, есть и противоположное мнение – сотрудники Института Уайтхеда уверены, что сокращение длины цепочки ДНК («генетический распад») мужской хромосомы – явление, характерное лишь для ранних этапов её эволюции. Сегодня структура генетической информации остаётся стабильной и сохранится таковой на протяжении многих миллионов лет.

Получить такие выводы удалось после секвенирования нуклеотидных оснований мужской половой хромосомы макак-резусов. Сравнив полученные данные с информацией о структуре аналогичных участков Y-хромосом людей и шимпанзе, учёные убеждены: на протяжении последних 25 млн. лет состав мужской половой хромосомы практически не претерпел изменений.

По сравнению с генетической информацией, которой обладают макак-резусы, мужская хромосома человека утратила лишь 1 ген. Это даёт основания утверждать, что на протяжении десятков миллионов лет исчезновения Y – хромосомы опасаться не приходится.

: “Является ли Y-хромосома исчезающей”

Зачатие без мужской хромосомы: реальный опыт

Учёным удалось прийти и к другим неожиданным выводам. Оказывается, чтобы самцы мышей смогли зачать здоровое потомство, им достаточно иметь всего 2 из нескольких десятков генов, входящих в Y-хромосому.

Уже сегодня научный свет задумывается о разработке методики, позволяющее обеспечить репродукцию человеческого рода без участия мужской хромосомы. Данные исследования крайне важны и в решении проблемы мужского бесплодия.

Так, проведённые на мышах анализы показали, что единственным геном, определяющим нормальное формирование сперматозоидов, являетсяEif2s3y, а за развитие особи по мужскому типу, сперматогенез и продуцирование мужских гормонов ответственен ген SRY.

В половых клетках мышей были оставлены лишь эти 2 гена, после чего их использовали для in vitro оплодотворения самок. В результате 9% беременностей закончились появлением на свет здоровых мышат, в то время как при естественном оплодотворении полноценной Y-хромосомой здоровое потомство получается в результате 26% беременностей.

Получены феноменальные выводы: в будущем при дефектности мужской хромосомы можно будет производить оплодотворение без её прямого участия. Если на других хромосомах обнаружатся партнёрские гены, взаимодействующие с генным кодом Y-хромосомы, теоретически существует возможность полного замещения их функций.

Мужская хромосома и онкологические болезни

Не менее интересная информация относительно Y-хромосомы была опубликована и в журнале Nature. Оказалось, что наблюдается прямая связь между развитием онкологических заболеваний и ранней смертностью пожилых мужчин, а также изменением состава их крови. Именно потеря в лейкоцитах Y-хромосомы предшествует подобным изменениям.

Обнаружить это явление учёным удалось полвека назад, однако причины и последствия выяснились только сейчас. Изучив динамику анализов крови 1153 мужчин в возрасте 70 и более лет, удалось обнаружить, что пожилые люди, в чьей крови утрачена Y-хромосома, живут в среднем на 5,5 лет меньше и чаще болеют раком.

Оказывается, что составляющие Y-хромосому гены не только определяют пол и участвуют в выработке сперматозоидов, но и играют другие, пока мало изученные, функции.

Согласно последним гипотезам, именно возрастная утрата Y-хромосомы нарушает полноценную работу иммунной системы, что и становится предпосылкой для бесконтрольного разрастания тканей и развития онкологии.

Если это так, то простой анализ состава лейкоцитов позволит оценить риск заболевания раком у конкретного мужчины.

Именно Y-хромосома является наиболее восприимчивой к воздействию внешних факторов и возможным мутациям, однако изучить весь спектр её влияния на организм учёным ещё предстоит.

Источник: https://kakbyk.com/pressa/novosti/ischeznovenie-muzhskoj-poloviny-nuzhna-li-chelovechestvu-y-khromosoma.html

Мужские хромосомы. Y-хромосома на что оказывает влияние и за что отвечает?

Y-хромосома и могущество. На что влияет мужская хромосома

Предмет генетических исследований – явления наследственности и изменчивости. Американский ученый Т-Х.

Морган создал хромосомную теорию наследственности, доказывающую, что каждый биологический вид можно характеризировать определенным кариотипом, который содержит такие виды хромосом, как соматические и половые.

Последние представлены отдельной парой, различающейся по мужской и женской особи. В данной статье мы изучим, какое строение имеют женские и мужские хромосомы и чем они отличаются между собой.

Что такое кариотип?

Каждая клетка, содержащая ядро, характеризуется определенным количеством хромосом. Оно получило название кариотипа. У различных биологических видов наличие структурных единиц наследственности строго специфично, например, кариотип человека составляет 46 хромосом, у шимпанзе – 48, речного рака – 112.

Их строение, величина, форма отличаются у особей, относящихся к различным систематическим таксонам. Число хромосом в клетке тела называется диплоидным набором. Он характерен для соматических органов и тканей.

Если в результате мутаций кариотип изменяется (например, у больных синдромом Клайнфельтера количество хромосом 47, 48), то такие особи имеют сниженную фертильность и в большинстве случаев бесплодны. Другое наследственное заболевание, связанное с половыми хромосомами, – синдром Тернера-Шерешевского.

Он встречается у женщин, имеющих в кариотипе не 46, а 45 хромосом. Это значит, что в половой паре присутствуют не две х-хромосомы, а только одна. Фенотипически это проявляется в недоразвитии половых желез, слабо выраженных вторичных половых признаках и бесплодии.

Соматические и половые хромосомы

Они отличаются как формой, так и набором генов, входящих в их состав. Мужские хромосомы человека и млекопитающих входят в гетерогаметную половую пару ХУ, обеспечивающую развитие как первичных, так и вторичных мужских половых признаков. У самцов птиц половая пара содержит две одинаковые ZZ мужские хромосомы и называется гомогаметной.

В отличие от хромосом, детерминирующих пол организма, в кариотипе находятся наследственные структуры, идентичные как у мужского, так и у женского пола. Они носят название аутосом. В кариотипе человека их 22 пары.

Половые мужские и женские хромосомы образуют 23 пару, поэтому кариотип мужчины можно представить в виде общей формулы: 22 пары аутосом + ХУ, а женщины – 22 пары аутосом + ХХ.

Мейоз

Образование половых клеток – гамет, при слиянии которых формируется зигота, происходит в половых железах: семенниках и яичниках. В их тканях осуществляется мейоз – процесс деления клеток, приводящий к образованию гамет, содержащих гаплоидный набор хромосом.

Овогенез в яичниках приводит к созреванию яйцеклеток только одного вида: 22 аутосомы + Х, а сперматогенез обеспечивает созревание гомет двух видов: 22 аутосомы + Х или 22 аутосомы + У.

У человека же пол будущего ребенка определяется в момент слияния ядер яйцеклетки и сперматозоида и зависит от кариотипа сперматозоида.

Хромосомный механизм и определение пола

Мы уже рассмотрели, в какой момент происходит определение пола у человека – в момент оплодотворения, и оно зависит от хромосомного набора сперматозоида. У других животных представители разного пола отличаются количеством хромосом.

Например, у морских червей, насекомых, кузнечиков в диплоидном наборе самцов присутствует лишь одна хромосома из половой пары, а у самок – обе.

Так, гаплоидный набор хромосом самца морского червя ацирокантуса можно выразить формулами: 5 хромосом + 0 или 5 хромосом + х, а самки имеют в яйцеклетках только один набор 5 хромосом + х.

Что влияет на половой диморфизм?

Кроме хромосомного есть еще и другие способы определения пола. У некоторых беспозвоночных – коловраток, многощетинковых червей – пол определяется еще до момента слияния гамет – оплодотворения, в результате которого мужские и женские хромосомы образуют гомологичные пары. Самки морской полихеты – динофилюса в процессе овогенеза образуют яйцеклетки двух видов.

Первые – мелкие, обедненные желтком, – из них развиваются самцы. Другие – крупные, с огромным запасом питательных веществ – служат для развития самок. У медоносных пчел – насекомых ряда Перепончатокрылых – самки продуцируют два вида яйцеклеток: диплоидные и гаплоидные.

Из неоплодотворенных яиц развиваются самцы – трутни, а из оплодотворенных – самки, являющиеся рабочими пчелами.

Гормоны и их воздействие на формирование пола

У человека мужские железы – семенники – продуцируют половые гормоны ряда тестостерона. Они влияют как на развитие первичных половых признаков (анатомическое строение наружных и внутренних половых органов), так и на особенности физиологии.

Под воздействием тестостерона формируются вторичные половые признаки – строение скелета, особенности фигуры, оволосение тела, тембр голоса, строение гортани. В организме женщины яичники вырабатывают не только половые клетки, но и гормоны, являясь железами смешанной секреции.

Половые гормоны, такие как эстрадиол, прогестерон, эстроген, способствуют развитию наружных и внутренних половых органов, оволосению тела по женскому типу, регулируют менструальный цикл и протекание беременности.

У некоторых позвоночных животных, рыб, кольчатых червей и земноводных биологически активные вещества, продуцируемые гонадами, сильно влияют на развитие первичных и вторичных половых признаков, а виды хромосом при этом не оказывают настолько большого воздействия на формирование пола.

Например, личинки морских полихет – бонеллии – под влиянием женских половых гормонов прекращают свой рост (размеры 1-3 мм) и становятся карликовыми самцами. Они обитают в половых путях самок, которые имеют длину тела до 1 метра. У рыб-чистильщиков самцы содержат гаремы из нескольких самок. Женские особи, кроме яичников, имеют зачатки семенников. Как только самец гибнет, одна из гаремных самок берет на себя его функцию (в её теле начинают активно развиваться мужские гонады, вырабатывающие половые гормоны).

Регуляция пола

В генетике человека она осуществляется двумя правилами: первое определяет зависимость развития зачаточных половых желез от секреции тестостерона и гормона MIS. Второе правило указывает на исключительную роль, которую играет У-хромосома.

Мужской пол и все соответствующие ему анатомические и физиологические признаки развиваются под воздействием генов, находящихся в У-хромосоме.

Взаимосвязь и зависимость обоих правил в генетике человека называется принципом роста: у эмбриона, являющегося бисексуальным (то есть имеющим зачатки женских желез – мюллерова протока и мужских гонад – вольфова канала) дифференцировка эмбриональной половой железы зависит от наличия или отсутствия в кариотипе У-хромосомы.

Генетическая информация в У-хромосоме

Исследованиями ученых-генетиков, в частности Т-Х. Моргана, было установлено, что у человека и млекопитающих генный состав Х- и У-хромосом неодинаков. Мужские хромосомы у человека не имеют некоторых аллелей, присутствующих в Х-хромосоме. Однако в их генофонде представлен ген SRY, контролирующий сперматогенез, приводящий к формированию мужского пола.

Наследственные нарушения этого гена в эмбрионе приводит к развитию генетического заболевания – синдрома Суайра. В результате женская особь, развивающаяся из такого эмбриона, содержит в кариотипе ХУ половую пару или только участок У-хромосомы, содержащий генный локус. Он активизирует развитие гонад.

У больных женщин не дифференцируются вторичные половые признаки, и они бесплодны.

У-хромосома и наследственные заболевания

Как отмечалось ранее, мужская хромосома отличается от Х-хромосомы как размерами (она меньше), так и формой (имеет вид крючка). Также для нее специфичен и набор генов. Так, мутация одного из генов У-хромосомы фенотипически проявляется появлением пучка жестких волос на мочке уха. Этот признак характерен только для мужчин.

Известно такое наследственное заболевание, вызванное хромосомной мутацией, как синдром Клайнфельтера. Больной мужчина имеет в кариотипе лишние женские или мужские хромосомы: ХХУ или ХХУУ. Основными диагностическими признаками является патологический рост молочных желез, остеопороз, бесплодие.

Заболевание достаточно распространено: на каждых 500 новорожденных мальчиков приходится 1 больной.

Подводя итог, отметим, что у человека, как и у других млекопитающих, пол будущего организма определяется в момент оплодотворения, вследствие определенной комбинации в зиготе половых Х- и У-хромосом.

Источник: http://fb.ru/article/261582/mujskie-hromosomyi-y-hromosoma-na-chto-okazyivaet-vliyanie-i-za-chto-otvechaet

Хромосома собирает в себе все мутации, скоро мужская хромосома исчезнет

Y-хромосома и могущество. На что влияет мужская хромосома

В чем загадки Y-хромосомы?

Y-хромосома непохожа на остальные сорок пять хромосом человеческого генома. У нее нет пары, она “собирает” в себе все возможные мутации и многие исследователи уверены, что скоро мужская половая хромосома вовсе исчезнет. Тем более, как выяснилось недавно, для размножения она не очень-то и нужна. А почему-то без нее обойтись невозможно…

По прогнозам ученых, Y-хромосома человека потенциально может полностью потерять свою функцию и исчезнуть из генома в течение следующих десяти миллионов лет.

“Мужская” половая хромосома значительно отличается от других хромосом, и, в частности, от Х-хромосомы тем, что при размножении особи не способна обмениваться генетическим участками.

В результате ее наследственный материал обеднел и хромосома накопила мутации, которые передаются из поколение в поколение. Но не стоит паниковать: как показали последние исследования, в будущем люди смогут заводить детей и без участия Y-хромосомы.

Мужская особенность

До недавних пор считалось, что X- и Y-хромосомы появились около 300 миллионов лет назад, однако совсем недавно ученые выяснили, что хромосомное определение пола отсутствовало еще 166 миллионов лет назад.

Согласно наиболее распространенной теории, X- и Y-хромосомы произошли от пары идентичных хромосом, когда у древних млекопитающих возник ген, один из аллелей которого направлял развитие организма по мужскому типу.

Хромосомы, несущие этот аллель, стали Y-хромосомами, а вторая хромосома в этой паре стала X-хромосомой. Таким образом, X- и Y-хромосомы изначально отличались лишь одним геном.

Со временем, гены, полезные для самцов и вредные или не имеющие значения для организма самок, стали развиваться в Y-хромосоме.

Y-хромосома не рекомбинирует с Х-хромосомой в процессе созревания половых клеток (гаметогенеза), поэтому изменяться она может только в результате мутаций.

Полученная в результате генетическая информация не отбраковывается и не “разбавляется” новыми вариациями генов, поэтому практически без изменений передается от отца к сыну на протяжении многих поколений.

Со временем количество вредных мутаций неизбежно растет.

В процессе гаметогенеза сперматозоиды подвергаются множественным клеточным делениям, и каждое из них предоставляет возможность для накопления мутаций. К тому же сперматозоиды находятся в высокоокислительной среде яичек, которая способствует появлению новых мутаций. Именно поэтому Y-хромосома “ломается” намного чаще других хромосом.

Стоп распаду “мужской” хромосомы

В процессе эволюции Y-хромосома человека потеряла большую часть изначально имевшихся в ней генов, и сейчас, по разным оценкам, содержит от 45 до 90 генов по сравнению с примерно 1400 генами на Х-хромосоме. Раньше ученые делали прогноз, по которому при подсчитанной скорости потери 4,6 генов на миллион лет, Y-хромосома человека потенциально может полностью потерять свою функцию в течение ближайших 10 миллионов лет.

Но есть и другое мнение: авторы исследования, проведенного в Институте биомедицинских исследований Уайтхеда, считают, что стремительная утрата генов — генетический “распад”, которым характеризовалась ранняя эволюция мужской половой хромосомы, сошел на нет, и Y-хромосома останется относительно стабильной в ближайшие десятки миллионов лет.

Исследователи секвенировали 11 миллионов пар нуклеотидных оснований Y-хромосомы макак-резусов. Сравнивая эту последовательность с аналогичным участком на мужской половой хромосоме, а также на Y-хромосоме шимпанзе, ученые пришли к выводу о том, что генетический состав мужской половой хромосомы в течение последних 25 миллионов лет почти не менялся.

По словам одного из авторов исследования, Дженифер Хьюз (Jennifer Hughes), в виду того, что “у человека всего один ген был утрачен Y-хромосомой в сравнении с макак-резусами, мы можем быть уверены в том, что в ближайшие миллионы лет мужская хромосома не исчезнет”.

Зачатие без Y-хромосомы

Гавайские исследователи продемонстрировали, что для зачатия здорового потомства самцам мышей достаточно всего двух генов из Y-хромосомы. Авторы статьи полагают, что в будущем возможно появление методики, позволяющей обойтись при человеческой репродукции совсем без Y-хромосомы. Кроме того, полученный результат потенциально имеет большое значение для борьбы с мужским бесплодием.

Ученые использовали половые клетки, полученные от самцов мышей, у которых от Y-хромосомы были оставлены только два гена — SRY (Sex-determining Region of Y) — наиболее значимый ген на Y-хромосоме, который отвечает за развитие организма по мужскому типу, выработку мужских гормонов и сперматогенез, и фактор пролиферации сперматогониев Eif2s3y. Как установили исследователи, Eif2s3y- единственный ген Y-хромосомы, требующийся для нормального формирования сперматозоидов.

Полученными мужскими половыми клетками были затем in vitro оплодотворены яйцеклетки с применением метода интрацитоплазматической инъекции (ROSI). Развившиеся эмбрионы имплантировали в матки самок. В результате этой процедуры девять процентов беременностей закончилось рождением здорового потомства.

А у самцов с полной Y-хромосомой этот показатель оказался равен 26 процентам. В будущем, по мнению ученых, можно вообще обойтись без Y-хромосомы в случае ее дефектности.

Если на других хромосомах будут найдены гены, взаимодействующие с генами Y-хромосомы, то активация таких партнерских генов теоретически сможет полностью заменить их функции.

Защита от рака?

Недавно в журнале Nature опубликовали данные, обнаружившие, что потеря Y-хромосомы в клетках крови (лейкоцитах), часто наблюдаемая у пожилых мужчин, связана с повышенным риском развития онкологических заболеваний и более ранней по сравнению с женщинами смертностью.

Это явление впервые было описано примерно 50 лет назад и до сих пор его причины и последствия оставались в большей степени невыясненными. Теперь шведские ученые изучили образцы крови 1153 пожилых мужчин в возрасте от 70 до 84 лет, которые наблюдались в клиниках с 40 лет.

Как оказалось, мужчины, в большей части образцов крови которых была выявлена утрата Y-хромосомы, жили в среднем на 5,5 лет меньше по сравнению с теми, у кого не наблюдалось такого явления.

Кроме этого, увеличение числа таких клеток крови значительно повышало риски мужчин умереть от рака.

“Многие считают, что Y-хромосома содержит лишь гены, вовлеченные в определение пола и производство сперматозоидов, однако на самом деле ее гены также участвуют в выполнении других важных функций, например, они потенциально могут играть роль в предотвращении развития опухолей, — отметили авторы в своей статье. — Наша гипотеза состоит в том, что возрастная потеря Y-хромосомы нарушает иммунную “бдительность” клеток крови, что позволяет опухолевым клеткам бесконтрольно расти и трансформироваться в рак”.

Полученные результаты позволяют предположить, что анализ крови на наличие лейкоцитов, утративших Y-хромосому, может стать новым подходом к выявлению повышенного риска развития онкологических заболеваний у мужчин. При этом исследователи подчеркнули, что наличие таких клеток в небольшом количестве не очень опасно, однако их преобладание может указывать на высокий риск развития рака.

Источник: http://www.medpulse.ru/health/19709.html

Мужская хромосома Y

Y-хромосома и могущество. На что влияет мужская хромосома

Эта небольшая, на первый взгляд, молекулярная структура, появившаяся почти 300 миллионов лет назад, играет самую решающую роль не только в формировании пола, но и во всей эволюции. Именно она ответственна за размножение, выживание и хранение информации о самых далеких предках.

И хотя мужская хромосома Y содержит намного меньшее количество генов, по сравнению с той же Х хромосомой, – только с ее помощью удалось сберечь самые важные характеристики, присущие как сильному полу, так и человечеству в целом.

Главный ген – SRY

Самым известным геном, расположенным в Y хромосоме, справедливо считается ген SRY. Благодаря ему происходит развитие эмбриона по мужскому типу – так, у плода формируются мужские половые органы. Если же этот ген поврежден, то несмотря на наличие Y хромосомы, вместо мальчика рождается девочка.

Правда, учеными зафиксированы и обратные случаи, когда SRY случайно попадал в Х хромосому (женскую хромосому) и становился причиной рождения мальчика с полноценным женским набором (ХХ).

Хочется напомнить, что сотни миллионов лет назад, еще до попадания гена SRY в мужскую хромосому, пол живого существа зависел только от окружающей среды и природных условий. Подобное развитие сегодня можно наблюдать у черепах – рождение самок или самцов из отложенных ими яиц определяет исключительно температура.

DAZ – гарантия продолжения рода

Ученые полагают, что этот ген появился в мужской хромосоме около 20-40 миллионов лет назад, как раз во времена первых приматов. По их мнению, именно DAZ отвечает за сперматогинез – одну из самых важных функций мужчины.

Соответственно, его повреждение или отсутствие становится причиной бесплодия или малого количества жизнеспособных сперматозоидов.

Почему мы разговариваем

Оказывается, возможностью вербально выражать свои мысли мы наделены также благодаря Y хромосоме. Как показывают недавние исследования, этому способствовал специальный ген PCDHY, появившийся в мужских клетках около 120-200 тысяч лет назад. 

Ученые утверждают – с его помощью оболочки нервных клеток стали формироваться определенным образом, что существенно упростило передачу и восприятие информации.

На первом месте – выживание

Следует отметить, мужская хромосома ответственна не только за развитие и продолжение рода – вдобавок она способна обеспечить выживание.

Так, если верить последнему исследованию шведских специалистов, уменьшение количества Y хромосомы в белых кровяных тельцах приводит к преждевременной смерти от различных заболеваний.

В то время как достаточное количество мужских структур дает шанс сохранить здоровье и прожить долгую жизнь.

К подобному выводу исследователи пришли в результате многолетнего наблюдения за большим количеством пациентов мужского пола, среди которых находились люди старшего возраста.

Как искать предков

Еще одним важным преимуществом мужской хромосомы является ее способность хранить генетическую информацию о предыдущих поколениях. Так, британские ученые выяснили: люди с одной и той же фамилией очень часто имеют схожие Y хромосомы. Они объясняют это тем, что именно мужчины могут сберечь как первоначальную фамилию, так и генетический код.

Вот почему в попытках восстановить свои корни люди используют передовые технологии, определяющие ДНК, – с их помощью для них открывается удивительная история предков и нередко находятся новые родственники. От любителей прошлого не отстают и современные историки, которые обнаруживают не менее интересные факты о жизни древних народов.

Немного об исчезновении

Всего лишь несколько лет назад служители науки были солидарны и считали, что мужская хромосома со временем исчезнет. Столь печальный факт подтверждали результаты многочисленных исследований, которые показывали – за время своего существования Y хромосома потеряла несколько сот генов.

Тем не менее сегодняшние открытия позволяют с оптимизмом смотреть в будущее – ведь, как подтвердили последние работы биологов, процесс распада приостановился. Так, по словам известного американского ученого Дэвида Пэйджа, последние двадцать пять миллионов лет мужская хромосома была стабильна.

Более того, ее наличие гарантировало дальнейшую эволюцию.

Ну а нам в свою очередь хочется надеяться, что главная мужская составляющая не только не останется неизменной, но и станет более совершенной – подарив новые возможности сильному полу и всему человечеству.

avtor: Ольга Волкова, для сайта super-mens.ru

Если вам понравилась статья, вы можете подписаться на обновления сайта super-mens.ru, чтобы не пропустить самое интересное! Это займет у вас всего несколько секунд!

Источник: http://super-mens.ru/zdorove/733-muzhskaja-hromosoma-y

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.